
Hardware
Acceleration
Report in
Robotics

Hardware acceleration will
revolutionize robotics, enabling new
applications by speeding up robot
response times while remaining
power-efficient. However, the
diversity of acceleration options
makes it difficult for roboticists to
select the right computational
resource for each task, defaulting
to CPUs. This report captures
the state-of-the art of hardware

acceleration in robotics by following
a quantitative approach and presents
robotic architects with a resource to
consider while designing their robot
computational architectures. The
report compares the most popular
computation solutions in robotics
used today through reproducible
and measurable examples available
at the ROS 2 Hardware Acceleration
Working Group GitHub organization.

About the
“2022
Hardware
Acceleration
Report in
Robotics”

https://github.com/ros-acceleration
https://github.com/ros-acceleration

Hardware Acceleration
Report in Robotics

2022

Acceleration Robotics is a firm
focused on designing customized
brains for robots to hasten their
response time. Founded by
top robotic experts to deliver
semiconductor building blocks
for robots, the company leverages
GPUs and FPGAs to create custom
hardware that speeds up a robot’s
operation.

About
Acceleration
Robotics

https://accelerationrobotics.com/

pg. 06		 1.
		 Executive 			

	 Summary
	

pg. 12		 2.
		 Introduction	
	
pg. 14		 2.1. The CPU whack-a-mole in 	

	 robotics	

pg. 16		 2.2. ROS 2 as the common 		
	 baseline in robotics	

pg. 17		 2.3. Bandwidth, latency and 		
	 performance considerations

	
pg. 18		 2.4. Methodology for 		

	 benchmarking performance	
	

pg. 19		 2.4.1. Differences between 		
	 tracing and benchmarking	

pg. 20		 3.
		 Community 		

	 Survey	
pg. 22		 3.1. Are you familiar with the 		

	 different hardware acceleration 	
	 solutions and their advantages 	
	 for ROS 2 and Gazebo? (e.g. 		
	 FPGAs vs GPUs)	

pg. 23		 3.2. Have you ever 			
	 programmed an acceleration 		
	 kernel?	

pg. 24		 3.3. We’re pushing forward 		
	 REP-2008 initiative to better 	

		 integrate hardware 	
		 acceleration with ROS and 		

	 Gazebo, what’s most
		 important for you?	

pg. 25		 3.4. Which hardware 		
	 acceleration platform/framework 	
	 are you familiar with?	

pg. 26		 3.5. What packages/		
	 components do you think

		 we should prioritize when it
		 comes to hardware
		 accelerating ROS 2 and/or 		

	 Gazebo?

pg. 27		 3.6. What specifically would 		
	 you like to see accelerated in 		
	 ROS 2 or Gazebo in the short 	
	 term?	

	
pg. 27		 3.7. What type of examples 		

	 would you like to see on how 	
		 hardware acceleration can 		

	 improve Gazebo/Ignition and 		
	 ROS 2?

Index

Hardware Acceleration
Report in Robotics

2022

pg. 28		 3.8. Silicon vendors often use 	
	 concerning licenses to lock

		 users into their hardware. 		
	 Which type of licenses would

		 you like to see in the 		
	 packages that your vendor 		
	 maintains/provides?

pg. 29		 3.9. Do you prefer kernels 		
	 integrated in ROS 2

		 packages as binaries or built 		
	 as part of the ROS 2

		 workspace from source?

pg. 30		 3.10. What do you care 		
	 more about when it comes

		 to hardware acceleration?

pg. 31		 3.11. Which hardware 		
	 acceleration solution are you 		
	 using or planning to use?

pg. 32		 3.12. Why have you picked this 	
	 hardware acceleration

		 solution?	

pg. 33		 3.13. Which computing 		
	 hardware solution are you

		 using in your robots?

pg. 34		 3.14. What type of robot are 		
	 you creating?

pg. 35		 3.15. Which Operating System 	
	 (rootfs) should we be focusing 	
	 on?

	
pg. 35		 3.16. How do you want your 	
		 accelerators packaged for 		

	 production use?	

pg. 36		 4.
		 Benchmarking 		

	 hardware 			
	 acceleration

pg. 38		 4.1. Case study: Hardware 		
	 Accelerating ROS 2

		 Perception	

pg. 39		 4.2. Benchmarking hardware 	
		 acceleration in a ROS 2 		

	 Perception Graph	
	
pg. 42		 4.3. Benchmarking hardware 		

	 acceleration in ROS 2
		 Perception Nodes

pg. 43		 4.3.1. Rectify - 7.34x

pg. 44		 4.3.2. Resize - 2.62x

pg. 45 		 4.3.3. Histogram of 	 	
	 Oriente Gradients - 		
	 509.52x

pg. 46		 4.3.4. Harris - 30.27x

pg. 47		 4.3.5. Canny Edge
		 Tracing - 3.26x

pg. 48 		 4.3.6. Fast Corner 		
 Detection - 8.43x

pg. 49 		 4.3.7. Gaussian Difference - 		
	 11.94x

pg. 50 		 4.3.8. Bilateral Filter - 		
	 9.33x

		
	

pg. 52		 5.
		 Discussion

pg. 58		 6.
		 Hardware 			

	 Acceleration 		
	 solutions for

		 the robotics
		 architect
pg. 60		 Robotic Processing Units 		

	 (RPUs)	
	
pg. 60		 Services
		
pg. 61		 Tools and Robot IP Cores	
	

pg. 62		 References

6

Hardware Acceleration
Report in Robotics

2022

7

Executive
Summary

8

Robots are deterministic machines. Meeting time
deadlines in their computations (real-time) is the most
important feature however other characteristics are also
of relevance while designing robotic computations
including the time between the start and the completion
of a task (latency), the total amount of work done in a
given time (bandwidth or throughput) or that a task
happens in exactly the same timeframe, each time
(determinism). CPUs are widely used in robotics due
to their availability however they hardly provide
real-time and safety guarantees while delivering
high throughput. Hardware acceleration (with either
FPGAs, GPUs or other accelerators) presents an answer
to this problem. One that allows the robotics architect
to create custom computing architectures for robots that
comply with real-time and bandwidth requirements, while
lowering power consumption.

Hardware acceleration has the potential to revolutionize
robotics, enabling new applications by speeding up robot
response times while remaining power-efficient. However,
the diversity of acceleration options makes it difficult for
roboticists to select the right computational resource
for each task. This report captures the state-of-the
art of hardware acceleration in robotics by following
a quantitative approach and presents robotic
architects with a resource to consider while designing
their robot computational architectures. The report
compares the most popular computation solutions
in robotics used today through reproducible and
measurable examples available at the ROS 2 Hardware
Acceleration Working Group GitHub organization.

Since most companies building real robots today use
ROS or similar event-driven software frameworks, this
report uses ROS as the common baseline in robotics
to conduct the study (section 2.2). In particular, we
use ROS 2 which presents a modern industry-accepted
framework for robot application development and
consider both bandwidth and latency to benchmark
performance in robotics (section 2.3) using a grey-box
and non-functional benchmarking approach (section 2.4).

https://github.com/ros-acceleration
https://github.com/ros-acceleration
https://github.com/vmayoral/ros-robotics-companies

9

Hardware Acceleration
Report in Robotics

2022

The work presented in this
report happened in two
phases. First, a community
survey conducted in both
the ROS and the overall
robotics communities
helped grasp the interest
behind the use of hardware
acceleration in robotics.
Input from this community
survey was then used to
drive the second phase,
a hardware acceleration
benchmarking effort. The
most relevant results from
these two phases are
summarized below:

Community
Survey

	
Only about half of the respondents (51%, section 3.1)
is confident about the value and differences between
hardware acceleration solutions for robotics:

 Only 62.5% (section 3.2) have ever programmed
an acceleration kernel.

 This suggests that there’s still a lot of work to be
done from silicon vendors’ side to further simplify the
use and integration of their solutions.

	
The majority of the roboticists currently use GPUs
(69.8%, section 3.11) versus FPGAs (21.9%):

 Roboticists seem to care about speed or latency
(48.9%, shorter execution time) as much as real-time
and determinism (46.8%). Only a reduced 4.3%
would prioritize power consumption (section 3.10).

 This indicates that there’s margin for FPGA usage
growth in the ROS robotics community.

	
When asked about the most relevant aspects of hardware
acceleration (section 3.3), 52.1% of the roboticists that
answered indicate that a simpler integration with ROS 2
and its ecosystem of tools is of most relevance to them:

 52.1% Integration with ROS 2 (ament build system
11.5%, colcon build tools 19.8% and acceleration
firmware 20.8%).

 32.3% Capabilities to easily switch between
hardware accelerated and CPU-centric Nodes.

 11.5% Benchmarking capabilities for hardware
acceleration.

 4.1% Others.

	
ROS 2 Perception stack with a 64.6% (section 3.5,
multiple selections allowed) is the most demanded
group of packages to be accelerated:

 64.6%	 ROS 2 Perception stack
 60.4%	 “Gazebo physics engines’’
 40.6%	 Navigation2
 30.2%	 “DDS communication middleware”
 21.9%	 MoveIt 2
 20.8%	 ROS 2 networking stack (UDP/IP/Ethernet)
 19.8%	 ROS 2 control stack

	
The majority of the respondents (92.7%) indicated that
they’d prefer the commercially friendly Apache 2.0 license
for hardware acceleration resources (section 3.8).

 74.8% would prefer source code access to
acceleration kernels with code examples (section 3.9)

	
Ubuntu seems to be the dominant (79.5%, section
3.15) operating system requested by ROS roboticists for
hardware acceleration.

 Ubuntu 20.04 is the preferred option (59%)
followed by Ubuntu 22.04 (20.5%).

 Yocto-based rootfs is preferred after Ubuntu (7.7%).

	
For packaging accelerators, deb files are the preferred
option (59%, section 3.16) followed by Docker containers
(23.1%).

https://github.com/ros-perception
https://github.com/ros-perception
https://github.com/ros-planning/navigation2
https://github.com/ros-planning/moveit2
https://github.com/ros-controls

10

Results obtained across benchmarks performed on a
ROS 2 perception graph show that from a latency point
of view optimized FPGA accelerators outperform their
GPU counterparts, even when using powerful GPUs.

 Considering mean runtime measurements (in
ms, Figure 15, section 4.2), the use of a CPU + FPGA
combination delivers a 3.56x speedup over a
comparable CPU + GPU, and a 1.36x speedup over a
comparable CPU.

 When considering a more powerful CPU + GPU
combination (Figure 17, section 4.2), the FPGA still
outperforms it with a 1.59x speedup.

ROS 2 Perception Nodes running in an FPGA also
outperform those running in a GPU by relevant
speedups.

 To discriminate between any possible differences
between the CPU cores, measurements were
collected isolating perception computations by
discarding both the ROS 2 message-passing
infrastructure overhead, as well as the host-device
(GPU or FPGA) data transfer overhead.

 Popular perception algorithms such as the
Histogram of Oriented Gradients (HOG) show
a 500x speedup in an FPGA and relative to a
comparable GPU (Figure 22).

Benchmarking
hardware
acceleration

11

Hardware Acceleration
Report in Robotics

2022

11

Figure 0

Performance-per-
watt benchmark

of a simple ROS 2
perception graph

across various
accelerators. The

computational graph
studied is described

in section 4.2.
Bigger is better.

ROS 2 perception graph performance-per-watt with hardware acceleration (Hz/W)

2.5

2

1.5

1

0.5

0

CPU + FPGA (KR260) CPU + FPGA
(Jetson Nano)

CPU + GPU
(Jetson AGX Xavier)

Overall, results hint that the rate at which the energy
consumption grows with GPU solutions seems to be
smaller than the rate at which the latency performance
improves, which leads to a decaying performance-per-
watt in our ROS 2 perception measurements with these
GPU + CPU solutions. Instead, FPGA-enabled solutions
present a performance-per-watt figure that’s 6x (5.93x)
better than the one observed in comparable GPU + CPU
sets and 8x (7.95x) better than the one in more power
GPU + CPU sets.

These results indicate that using bandwidth as the
only measure of performance can be misleading in
ROS and robotics. Moreover, data suggests that when
considering latency as the measure of performance, GPU
sets may struggle to find themselves on equal footing
with their FPGA counterparts.

There are nevertheless various advantages that GPUs
inherently have and that should be considered while
building complex robotic computations. Moreover,
though FPGA kernel runtime execution outperforms their
GPU counterparts, it’s relevant to note that FPGAs are
resource-limited and thereby it’s important to consider
that only a fixed set of accelerators would be able to fit
within an FPGA at any given point in time whereas the
GPUs don’t have this limitation due to their architectures.
Scalable robot compute architectures that consider
hardware acceleration should look at combining CPUs,
GPUs and FPGAs to obtain the best trade-off.

12

Hardware Acceleration
Report in Robotics

2022

13

Introduction

14

The CPU whack-a-mole
in robotics

Robots are deterministic machines. Meeting time
deadlines in their computations (real-time) is the most
important feature however other characteristics are also
of relevance while designing robotic computations
including the time between the start and the completion
of a task (latency), the total amount of work done in a
given time (bandwidth or throughput) or that a task
happens in exactly the same timeframe, each time
(determinism).

There’s a critical relationship between the hardware and
the software capabilities in a robot. Robotic systems
usually have limited on-board resources, including
memory, I/O, disk or compute capabilities, making it
hard to balance between real-time and bandwidth
requirements (due to limited shared resources), and
restricting robots’ reaction capabilities and speed. A key
challenge in robotics
using general purpose
CPUs1 is that they hardly
provide real-time and
safety guarantees
while delivering high
throughput. The de facto
strategy in industry [1] to
meet timing deadlines
is a laborious, empirical,
and case-by-case tuning
of the system. This
“CPU whack-a-mole”
approach in robotics is
unsustainable and hard
to scale due to the lack
of a hardware-supported
timing-safe event driven
programming interface in
CPUs.

CPUs hardly
provide
real-time and
safety guarantees
while delivering
high throughput.
This “CPU whack-
a-mole” approach
in robotics is
unsustainable and
hard to scale

1

CPUs are widely
used in commercial
compute platforms

in robotics due to
their availability and
generalized use. The

general purpose nature
of CPUs makes them

specially interesting for
roboticists to kickstart

projects, however
this comes at a cost

when translating into
real applications: their

fixed architectures
and limited amount

of resources difficult
adaptability to new

(computing) robotic
scenarios and always

impose a trade-off
between performance

and determinism.

2.1

15

Hardware Acceleration
Report in Robotics

2022

Hardware acceleration with dedicated compute architectures (in either
FPGAs, GPUs or other accelerators) is presented as an alternative to CPUs.
One that allows the architect to adaptively generate custom computing
architectures to meet the robotic computing demands, delivering a solution

that can comply with
real-time and bandwidth
requirements while
increasing reliability and
lowering power consumption. Hardware

acceleration is
presented as an
alternative to
CPUs delivering
a solution that
can comply
with real-time
and bandwidth
requirements

This report presents robotic
architects with a resource
to consider while designing
their robot computational
architectures that
describes how hardware
acceleration can improve
their performance. To study
the capabilities of hardware
acceleration in robotics, this

article follows a quantitative approach [2] to measure
performance and compares the most popular hardware
computation solutions in robotics used today through ROS 2.

Results presented in this report are meant to be
reproducible and disclosed as open source examples
made publicly available at the ROS 2 Hardware
Acceleration Working Group GitHub organization
repositories.

https://github.com/ros-acceleration
https://github.com/ros-acceleration
https://github.com/ros-acceleration

16

ROS 2 as the common
baseline in robotics
Robot behaviors take the form of computational graphs,
with data flowing between computation Nodes, across
physical networks (communication buses) and while
mapping to underlying sensors and actuators. The
popular choice to build these computational graphs for
robots these days is the Robot Operating System (ROS)
[3], a framework for robot application development. ROS
enables you to build computational graphs and create
robot behaviors by providing libraries, a communication
infrastructure, drivers and tools to put it all together. Most
companies building real robots today use ROS or similar
event-driven software frameworks. ROS is thereby the
common language in robotics, with several hundreds
of companies and thousands of developers using it
everyday. ROS 2 [4] was redesigned from the ground up
to address some of the challenges in ROS and solves
many of the problems in building reliable robotics
systems.

ROS 2 presents a modern and popular framework for
robot application development most silicon vendor
solutions support, and with a variety of modular
packages, each implementing a different robotics
feature that simplifies performance benchmarking in
robotics.

2.2

https://github.com/vmayoral/ros-robotics-companies
https://github.com/vmayoral/ros-robotics-companies

17

Hardware Acceleration
Report in Robotics

2022

Bandwidth, latency
and performance
considerations
The field of robotics is changing rapidly and must be
studied with real examples and measurements on real
robotic computations, rather than simply as a collection of
definitions, designs and marketing actions. The quantitative
approach [2] to robotics systems architecture fits well in
this context and helps robotic architects come up with
better performing architectures through an empirical
strategy, and case-by-case tuning of the system.

In robotics bandwidth or throughput is the total amount
of work done in a given time, such as the publication
frequency (in frames per second) of a ROS 2 perception
feed resulting from processing the data of a camera, or the
data transfer rate in a give ROS 2 Topic (in megabytes per
second) of a processed point cloud coming from a depth
sensor. In contrast, latency or response time is the time
between the start and the completion of a task, such as
milliseconds for the reception of an image from a ROS 2
Topic subscription in a computational graph.

When speaking about performance in robotics,
both bandwidth and latency should be taken into
consideration. In particular, given the importance of real-
time in robotics we’d generally be interested in the latency
for performance benchmarking.

2.3

A final consideration is the bandwidth/latency
performance improvement ratio in robotics. A simple rule
of thumb in (general) computation is that bandwidth
grows by at least the square of the improvement
in latency. Robotic architects should take this into
consideration while designing their robotic systems.

When speaking about
performance in robotics,
both bandwidth and
latency should be taken
in consideration

18

Methodology
for benchmarking
performance

Benchmarking is the act of running a computer program to assess its relative
performance. In the context of hardware acceleration, it’s fundamental to
assess the relative performance of an acceleration kernel versus its CPU scalar
computing baseline. Similarly, benchmarking helps comparing acceleration
kernels across hardware acceleration technology solutions (e.g. FPGA_A vs
FPGA_B or FPGA_A vs GPU_A, etc.) and across kernel implementations (within
the same hardware acceleration technology solution).

There’re different types of benchmarking approaches. The following diagram
depicts the most popular inspired by [5]:

Figure 1

Performance
benchmarking

approaches.
Functional

(top-left),
Non-functional

(top-right),
Black-Box

(bottom-left) and
Grey-box

(bottom-right).

+

+

+

+

+

+

+

+

Probe

Function

System under test

System under test System under test

System under test

Probe

latency
throuhput
memory
CPU

Probe
Probe
Probe
Probe

Probe

Probe

Probe

FUNCTIONAL

Probes

BLACK-BOX GREY-BOX

Test App.
Application

NON-FUNCTIONAL

+ +

+
+
+
+

-
-
-
-

+

+

+

+

+

+

+

+

+

++

v v

+

+

+

+

v v v v

v
v

v
v

++++

++

v
v

v

++

++

2.4

19

Hardware Acceleration
Report in Robotics

2022

In addition, the following aspects should
be considered when benchmarking
ROS 2 robotics computations:

	
Embedded: Benchmarks should run in embedded easily.

ROS 2-native: Benchmarks should consider the particularities of ROS
2 and its computational graph. If necessary, they should instrument the
communications middleware and its underlying layers.

Intra-process, inter-process and intra-network: Measures
conducted should consider communication within a process in the
same SoC, between processes in an SoC and between different
SoCs connected in the same network (intra-network).

Compute substrate-agnostic: benchmarks should be able to run
on different hardware acceleration technology solutions. For that
purpose, a CPU-centric framework (as opposed to an acceleration
technology-specific framework) that can be integrated in various
accelerators for benchmarking and/or tracing is the ideal choice.

Automated: benchmarks and related source code should
be designed with automation in mind. Once ready, creating a
benchmark and producing results should be (ideally) a fully
automated process.

Hardware farm mindset: benchmarks will be conducted on
hardware embedded platforms sitting in a farm-like environment
(redundancy of tests, multiple SoCs/boards) with the intent of
validating and comparing different technologies.

Accounting for all of this, and similar to the ROS Enhancement
Proposal (REP) REP-2008 proposal [6], in this report we adopt
a grey-box and non-functional benchmarking approach
for hardware acceleration that allows to evaluate the relative
performance of accelerated ROS 2 individual Nodes as well as
complete computational graphs. To realize it in a technology
agnostic-manner, we select the Linux Tracing Toolkit next generation
(LTTng) which will be used for tracing and benchmarking.

Differences
between
tracing and
benchmarking
Tracing and benchmarking can be
better understood as follows:

Tracing: a technique used to
understand what goes on in a
running software system.

Benchmarking: a method of
comparing the performance of
various systems by running a
common test.

From these definitions, inherently
one can determine that both
benchmarking and tracing are
connected in the sense that the
test/benchmark will use a series
of measurements for comparison.
These measurements will come
from tracing probes. In other words,
tracing will collect data that will
then be fed into a benchmark
program for comparison.

2.4.1

https://github.com/ros-infrastructure/rep/pull/324
https://lttng.org/

20

Hardware Acceleration
Report in Robotics

2022

21

Community
Survey

22

Are you familiar with the
different hardware acceleration
solutions and their advantages
for ROS 2 and Gazebo?
(e.g. FPGAs vs GPUs)

96 answers

46,9%

51%

3.1

Figure 2

Results from
the “Hardware

acceleration in
ROS 2 and Gazebo

survey” (link)
question:

“Are you familiar
with the different

hardware
acceleration

solutions and
their advantages

for ROS 2 and
Gazebo? (e.g.

FPGAs vs GPUs)?”.

Yes

No

Only GPU
acceleration for
rendering

I’ve heard of the
FPGA options in 2
papers concerning
Reinforcement
Learning and Fixed-
Point logic. Not
aware of GPU or
generic tools.

https://docs.google.com/forms/d/e/1FAIpQLScXDFPLKGKti2Njg5JUyD4Ri6p31Nl8fyJTvar3ceQJLVRmcg/closedform

Hardware Acceleration
Report in Robotics

2022

23

Have you ever
programmed an
acceleration kernel?
96 answers

Figure 3

Results from
the “Hardware

acceleration
in ROS 2 and

Gazebo survey”
(link) question:
“Have you ever

programmed
an acceleration

kernel?”.

62,5%

37,5%

3.2

Yes

No

https://docs.google.com/forms/d/e/1FAIpQLScXDFPLKGKti2Njg5JUyD4Ri6p31Nl8fyJTvar3ceQJLVRmcg/closedform

24

Figure 4

Results from
the “Hardware

acceleration in
ROS 2 and Gazebo

survey” (link)
question: “We're
pushing forward

REP-2008 initiative
(Hardware

Acceleration
Architecture and

Conventions, https://
github.com/ros-

infrastructure/rep/
pull/324) to better

integrate hardware
acceleration with
ROS and Gazebo,

what's most
important for you?”.

11,5%

32,3%

20,8%
11,5%

19,8%

Integration with
ROS 2 build system
(ament)

Integration with ROS
2 build tools (colcon)

Acceleration
firmware integrated
into ROS 2
workspaces
(cross-compilers,
hypervisors, etc.)?

We’re pushing forward
REP-2008 initiative to better
integrate hardware acceleration
with ROS and Gazebo, what’s
most important for you?
96 answers

3.3

Benchmarking
capabilities
for hardware
acceleration

Capabilities to
easily switch
between hardware
accelerated and
CPU-centric Nodes

They are all equally
important to
make offloading
transparent for the
user

None of the above

Adding acceleration
to important packages
that just work without
thinking about it

Complete and accurate
documentation is
the priority to me.
Likely, large part of the
community is unfamiliar
with hardware
acceleration

https://docs.google.com/forms/d/e/1FAIpQLScXDFPLKGKti2Njg5JUyD4Ri6p31Nl8fyJTvar3ceQJLVRmcg/closedform

Hardware Acceleration
Report in Robotics

2022

25

Xi
lin

x
H

LS

A
M

D
 R

O
C

m

N
vi

di
a

C
U

D
A

O
pe

nC
L

ra
w

 H
D

L

O
pe

nG
L

C
om

pu
te

r S
ha

de
rs

pu
re

 V
H

D
L/

Ve
ril

og

D
oe

s
PY

N
Q

 c
ou

nt
?

In
te

l D
PC

++

SY
C

L/
D

PC
++

, IS
PC

, M
es

a,
O

p.
..

0

20

40

60

80

35
 (3

6,
5%

)

80
 (8

3,
3%

)

1 (
1%

)

1 (
1%

)

1 (
1%

)

1 (
1%

)

1 (
1%

)

1 (
1%

)

25
 (2

6%
)

11
 (1

1,5
%)

3.4 Which hardware acceleration
platform/framework are you
familiar with?
96 answers (multiple answers allowed)

Figure 5

Results from
the “Hardware

acceleration
in ROS 2 and

Gazebo survey”
(link) question:

“Which hardware
acceleration

platform/
framework are you

familiar with?”.

https://docs.google.com/forms/d/e/1FAIpQLScXDFPLKGKti2Njg5JUyD4Ri6p31Nl8fyJTvar3ceQJLVRmcg/closedform

26

A.	 Gazebo/Ignition physic engines
B.	 ROS 2 navigation stack (navigation2)
C.	 ROS 2 manipulation stack (MoveIt2)
D.	 ROS 2 perception stack
E.	 ROS 2 communication middleware (DDS, i.e. offloading it to hardware)
F.	 ROS 2 networking stack (UDP/IP/Ethernet, more deterministic network interactions)
G.	 ROS 2 control stack
H.	 All of them are important. Accelerating Gazebo could be useful when working with

synthetic environment for RL or DRL. The other are both for timings and deterministic
properties of the nodes

I.	 Webots physics engine
J.	 Image and depth data processing pipelines. Improvements on image and depth data

compression and their integration with rosbag recording.
K. Lidar drivers and perception
L. I’d like to see more general tools that can be implemented as nodes or library calls that

allow me to quickly build accelerated alternatives for my system.

What packages/components
do you think we should prioritize
when it comes to hardware
accelerating ROS 2 and/or Gazebo?
96 answers (multiple answers allowed)

3.5

Figure 6

Results from the
“Hardware acce-
leration in ROS 2

and Gazebo survey”
(link) question:

“What packages/
components do

you think we should
prioritize when it

comes to hardware
accelerating ROS 2

and/or Gazebo?”.

29
 (3

0,
2%

)

20
 (2

0,
8%

)

19
 (1

9,
8%

)

1 (
1%

)

1 (
1%

)

1 (
1%

)

1 (
1%

)

1 (
1%

)

21
 (2

1,9
%)

62
 (6

4,
6%

)

39
 (4

0,
6%

)

58
 (6

0,
4%

)

0

20

40

60

80

A B C D E F G H I J K L

https://docs.google.com/forms/d/e/1FAIpQLScXDFPLKGKti2Njg5JUyD4Ri6p31Nl8fyJTvar3ceQJLVRmcg/closedform

Hardware Acceleration
Report in Robotics

2022

27

Selected Answers

ROS 2

	 Perception (3D SLAM, VIO package,
image_proc)

	 Nav2

	 Moveit2 ompl

	 ROS 2 control stack

	 The ability to create hardware based timers
in ros2 for deterministic call back times

	 The ROS 2 executor and counterparts
in DDS. For example, a scheduler
implemented in hardware

Selected Answers

	 Accelerated simulations (2+ times faster
than RT) with Nav2, multiple AMRs in
simulations, SLAM

	 An out of the box hardware accelerated
velodyne simulator

	 Multi-Agent with computational
expensive sensors like 3D cameras

What specifically would you like
to see accelerated in ROS 2 or
Gazebo in the short term?
96 answers

What type of examples would
you like to see on how hardware
acceleration can improve
Gazebo/Ignition and ROS 2?
45 answers

3.6

3.7

Gazebo

	 Allow fast rendering like in Unity

	 3D camera simulation (libgazebo_ros_
openni_kinect)

	 Physics engine in Gazebo and enable
ML training

	 Accelerated simulated sensors/sensor
processing

 Gazebo physics

	 Latency and timing cycles. Additional
capabilities unlocked due to lower
latency

	 Perception and planning examples,
with source

28

Silicon vendors often use
concerning licenses to lock
users into their hardware. Which
type of licenses would you like
to see in the packages that your
vendor maintains/provides?
96 answers

3.8

Figure 7

Results from
the “Hardware

acceleration in
ROS 2 and Gazebo

survey” (link)
question: “Silicon
vendors often use

concerning licenses
to lock users into

their hardware.
Which type of

licenses would you
like to see in the

packages that your
vendor maintains/

provides?”.

Apache 2.0
(commercially
friendly, defalut in
ROS 2.0)

GPL

Need source, does
not matter otherwise

apache2 mit etc.
other opensource
and commercially
friendly alternatives
too)

Any open source

Not sure about
this as I don’t have
enough experience
yet

BSD, MIT

MIT

92,7%

https://docs.google.com/forms/d/e/1FAIpQLScXDFPLKGKti2Njg5JUyD4Ri6p31Nl8fyJTvar3ceQJLVRmcg/closedform

Hardware Acceleration
Report in Robotics

2022

29

Do you prefer kernels integrated
in ROS 2 packages as binaries
or built as part of the ROS 2
workspace from source?

96 answers

3.9

Binaries are just fine, I just want a plug and play solution

Binaries are fine and what I'll use but it'd be great to have
source code examples

I need the source code of kernels, and plan to build them
from source (corresponde con amarillo y verde, juntos)

Why not the standard approach? sources on github and
binaries in APT? You can always overlay the system-insta-
lled package with a custom-built one should you need
custom-built kernels.

Source code if it means faster availability. Binaries could
follow once community of users if large enough.

We are interested in safety and safety certifications, so
source would be ideal for us unless we can have safety
rated modules that are binary

I'd like both. Binaries for plug and play for users with
common hardware, but source for custom projects and
memory hardware constrains.

Binaries would be fine but there are always corner cases
when reading the source code may give you a hint on
whats is going wrong. Not sure if I will spend time
building it but having the code available is useful for
keeping track of things.

(corresponde con azul oscuro) Not sure if the other 3
bullets on this answer cover what I'd like to see. I want
binaries for the "common" use cases - say...a semantic
segmentation module of YOLOvX and a module of
ResNet-50 + Mask R-CNN + FPN. That way, I can grab
something from the single-shot detector and 2-stage
detection schemes for quick inclusion in a system. But I
want the source code when I look to implement my own
accelerated system. In which case, I'd like to be able to
test the source and see it run just like the ResNet binary,
such that I can start making the changes I need.

48,4%

26.4%

18,9%

Figure 8

Results from
the “Hardware

acceleration in
ROS 2 and Gazebo

survey” (link)
question:

“Do you prefer
kernels integrated

in ROS 2 packages
as binaries or built
as part of the ROS
2 workspace from

source? (Note that
hardware skills to
develop or extend

acceleration
kernels are scarce

and learning
what’s required

may take years)?”.

Binaries are just fine,
I just want a plug
and play solution

Binaries are fine
and what I’ll use
but it’d be great to
have source code
examples

 I need the source
code of kernels, and
plan to build them
from source

Why not the
standard approach?
sources on github
and binaries in APT?
You can always
overlay the system-
installed package
with a custom-built
one should you need
custom-built kernels

Source code if
it means faster
availability. Binaries
could follow once
community of users
if large enough

We are interested in safety and safety
certifications, so source would be ideal
for us unless we can have safety rated
modules that are binary

I’d like both. Binaries for plug and play
for users with common hardware, but
source for custom projects and memory
hardware constrains

Binaries would be fine but there are
always corner cases when reading the
source code may give you a hint on
whats is going wrong. Not sure if I will
spend time building it but having the
code available is useful for keeping track
of things

Not sure if the other 3 bullets on this
answer cover what I’d like to see. I want
binaries for the “common” use cases -
say...a semantic segmentation module of
YOLOvX and a module of ResNet-50 +
Mask R-CNN + FPN. That way, I can grab
something from the single-shot detector
and 2-stage detection schemes for quick
inclusion in a system. But I want the
source code when I look to implement my
own accelerated system. In which case, I’d
like to be able to test the source and see it
run just like the ResNet binary, such that I
can start making the changes I need

https://docs.google.com/forms/d/e/1FAIpQLScXDFPLKGKti2Njg5JUyD4Ri6p31Nl8fyJTvar3ceQJLVRmcg/closedform

30

What do you care more
about when it comes to
hardware acceleration?
94 answers

3.10

Figure 9

Results from
the “Hardware

acceleration in
ROS 2 and Gazebo

survey” (link)
question: “What

do you care more
about when it

comes to hardware
acceleration?”.

Speed (or latency):
time between

the start and the
completion of a

task

Real-time: Meeting
time deadlines in

their computations

Determinism: that
a task happens in
exactly the same
timeframe each

time

46,8%

48,9%

Speed (shorter
execution time)

Real-time and
determinism

Power consumption

https://docs.google.com/forms/d/e/1FAIpQLScXDFPLKGKti2Njg5JUyD4Ri6p31Nl8fyJTvar3ceQJLVRmcg/closedform

Hardware Acceleration
Report in Robotics

2022

31

Which hardware acceleration
solution are you using or
planning to use?
96 answers

3.11

Figure 10

Results from
the “Hardware

acceleration
in ROS 2 and

Gazebo survey”
(link) question:

“Which hardware
acceleration

solution are you
using or planning

to use?”.

69,8%

21,9%

FPGA

GPU

Both

Cloud-based
solutions for edge-
computing (GPU for
sure, less so for...

Both

Both GPU and FPGA.
This should be...

Both GPU and FPGA

FPGA + GPU

GPU now FPGA later

https://docs.google.com/forms/d/e/1FAIpQLScXDFPLKGKti2Njg5JUyD4Ri6p31Nl8fyJTvar3ceQJLVRmcg/closedform

32

Selected Answers

	 Easy access

	 More in line with my area of expertise and build
methods

	 Relatively low-cost off-the-shelf hardware is available

	 Every proper laptop or PC has a GPU, unfortunately
OpenCL is not spreaded that widely to be
independent of GPU manufacturer

	 There are already some resources for GPU integration
that developers can “easily” hack together with ROS 2
or Ignition for parallelised stuff. However, using FPGA
with ROS 2 sounds like a steeper learning curve
- but having a group focusing on simplifying its
integration/availability would open the use of FPGAs
to the community

	 We are using NVIDIA because it is widely available
and easy to use. However we are looking at FPGAs
now because some of the vendors have SIL and ASIL
ratings. We cannot get SIL rated AGX SOMs from
NVIDIA

	 FPGA is more versatile to make hardware acceleration

	 GPU are more widely spread

	 FPGA’s can enable better power consumption
for similar accuracy and speed of GPUs. But GPU
libraries make it easier to put them in systems. I want
to compare FPGA and GPU performance

Why have you picked this
hardware acceleration
solution?
51 answers

3.12

Hardware Acceleration
Report in Robotics

2022

33

Which computing
hardware solution are you
using in your robots?
96 answers

3.13

Figure 11

Results from
the “Hardware

acceleration
in ROS 2 and

Gazebo survey”
(link) question:

“Which computing
hardware solution

are you using
in your robots?

(please specify if
other)”.

33,3%

15,6%

8,3%

9,4%

Xilinx Zynq
UltraScale+ boards

Xilinx Zynq
7000-series boards

Xilinx Kria SOM

Nvidia Jetson Nano

Nvidia Jetson AGX
Xavier

Raspberry Pi 3

Raspberry Pi 4

Qualcomm RB5

Nvidia Jetson TX2

Nvidia Jetson Xavier
NX

NVIDIA RTX 3070

Others

https://forms.gle/W595RKEiWrSMwrMw5

34

What type of robot are
you creating?
96 answers

3.14

Figure 12. a

Results from
the “Hardware

acceleration in
ROS 2 and Gazebo

survey” (link)
question: “What
type of robot are

you creating?
(please specify if
other)”. Processed

answers.

Industria
l m

obile robot (A
MR,AGV, etc.)

Industria
l m

anipulator (ro
botic arm)

40

30

20

10

0

36
.4

%

19
.8

%

12
.5

%

5.
2%

5.
2%

In
du

st
ria

l m
ob

ile
 ro

bo
t (

A
M

R,
A

G
V,

et
c.

)

A
er

ia
l r

ob
ot

 (d
ro

ne
, U

AV
)

In
du

st
ria

l m
an

ip
ul

at
or

 (r
ob

ot
ic

 a
rm

)

Le
gg

ed
 ro

bo
t

N
A

H
um

an
oi

d
ro

bo
t

U
nd

er
w

at
er

 ro
bo

ts

M
ed

ic
al

 ro
bo

t

A
gr

ic
ul

tu
ra

l r
ob

ot
s

M
ob

ile
 m

an
ip

ul
at

or
s

lo
gi

st
ic

A
ut

on
om

ou
s

C
ar

su
rfa

ce
 v

eh
ic

le
 (b

oa
t)

Se
rv

ic
e

ro
bo

t

So
ft

 R
ob

ot

W
he

el
ed

 ro
ve

r

G
ro

un
d

ex
pl

or
er

https://docs.google.com/forms/u/0/d/e/1FAIpQLScXDFPLKGKti2Njg5JUyD4Ri6p31Nl8fyJTvar3ceQJLVRmcg/closedform

Hardware Acceleration
Report in Robotics

2022

35

Which Operating System (rootfs)
should we be focusing on?
39 answers

How do you want your accelerators
packaged for production use?
39 answers

3.15

3.16

Figure 12.b

Results from
the “Hardware

acceleration in
ROS 2 and Gazebo

survey” (link)
question: “Which

Operating System
(rootfs) should we

be focusing on?”.

Figure 13

Results from
the “Hardware

acceleration
in ROS 2 and

Gazebo survey”
(link) question:

“How do you want
your accelerators
(and accelerated

applications)
packaged for

production use?”.

59%
7,7%

20,5%

59%

23,1%

As .deb files

As Docker containers

As snaps

no clear preference

I don’t care, any
proposed method
is ok

Yocto-based (DIY)

Ubuntu 20.04

Ubuntu 22.04

Not picky

I don’t really care,
Yocto/Buildroot
would be fine, but
Ubuntu as well

Not sure how
to answer
this as I’m
in research. I
want binaries
and source
code.

Both .deb and
Container

Docker

For
development:
Windows OS
with/without
VM. For
deployment:
Ubuntu 20.04.

Ubuntu 18.04
(thanks to
NVIDIAs slow

https://docs.google.com/forms/d/e/1FAIpQLScXDFPLKGKti2Njg5JUyD4Ri6p31Nl8fyJTvar3ceQJLVRmcg/closedform
https://docs.google.com/forms/d/e/1FAIpQLScXDFPLKGKti2Njg5JUyD4Ri6p31Nl8fyJTvar3ceQJLVRmcg/closedform

36

Hardware Acceleration
Report in Robotics

2022

37

Benchmarking
hardware
acceleration

The community survey conducted in both the overall
robotics and ROS communities hinted that 62 out of
96 respondents (64,6%) believed that the ROS 2
Perception stack should be prioritized (section 3.5,
Figure 6) from a hardware acceleration perspective.
In addition, 46 out of 94 respondents (48,9%, the
most popular option amongst the available) indicated
that speed or latency (shorter execution time) is
what they care most about (section 3.10 , Figure 9).
Accordingly, this report’s performance benchmarking
will focus on reporting around the latency perceived in a
series of ROS 2 Perception scenarios.

Source code used to perform these benchmarks is
open and available in GitHub. In particular, the ros-
acceleration organization contains various related
resources including the perception_2nodes meta-
package which is used to benchmark ROS 2 graphs.
Additional examples used to benchmark ROS 2 Nodes
and produce some of these results can be found at
acceleration_examples.

Each benchmark studying ROS 2 computational graphs
was instrumented with LTTng and was traced during 60
seconds, which was then used to produce comparisons.

https://github.com/ros-acceleration
https://github.com/ros-acceleration
https://github.com/ros-acceleration/acceleration_examples/tree/main/graphs/perception/perception_2nodes
https://github.com/ros-acceleration/acceleration_examples

38

Robotics perception helps sense the static and dynamic
objects, and build a reliable and detailed representation
of the robot’s environment using computer vision and
machine learning techniques. Data obtained in a robot
from its sensors like cameras and LIDAR is typically
fed into the perception layer turning into something
useful for decision making and planning physical
actions. The perception layer in a robot is thereby
responsible for object detection, segmentation and
tracking. Traditionally, a perception pipeline starts
with image pre-processing, followed by a region of
interest detector and then a classifier that outputs
detected objects. ROS 2 provides various pre-built Nodes
(Components more specifically) that can be used to build
perception pipelines easily.

Case study:
Hardware
Accelerating ROS 2
Perception

4.1

To benchmark ROS 2 Perception, the following
subsections will follow the methodology described
in section 2.4. First by analyzing the performance
of a simple ROS 2 Graph involving 2 perception
pre-processing Nodes and later by measuring the
acceleration kernel execution time of various perception
operations, including more complex filters. In both cases,
measurements will be made to meet the preferences
collected during the previous survey capturing runtime
execution (or more specifically, the latency).

Robotics perception helps
sense the static and dynamic
objects, and build a reliable
and detailed representation
of the robot’s environment

39

Hardware Acceleration
Report in Robotics

2022

The ROS 2 perception graph studied is depicted below
and taken from [7]:Figure 14

Computational
graph of our case
study is a ROS 2

Perception graph
that leverages the

image_pipeline ROS
package. The graph
contains two ROS 2

perception nodes: (1)
RectifyNode which
subscribes to the /

camera/image_raw
and /camera/
camera_info

topics from Gazebo
(which is simulating
the camera and the

scene) and publishes
a rectified image

to (2) ResizeNode,
which publishes the

final resized image.

The following results are obtained while benchmarking
this ROS 2 graph following 2.4 with a CPU and with
combinations of popular hardware acceleration solutions
used in robotics and their frameworks2:

2

For AMD solutions
the Kria Robotics

Stack (KRS 1.0)
and the Vitis Vision

Library (2021.2)
have been used with

a 250 MHz clock
while producing
accelerators. For

NVIDIA solutions,
NVIDIA Isaac ROS DP
1.1 packages and the
Vision Programming

Interface (VPI) 2.1
have been used.

Benchmarking hardware
acceleration in a ROS 2
Perception Graph

4.2

https://github.com/ros-perception/image_pipeline
https://github.com/xilinx/KRS
https://github.com/xilinx/KRS
https://xilinx.github.io/Vitis_Libraries/vision/2021.2/index.html
https://xilinx.github.io/Vitis_Libraries/vision/2021.2/index.html
https://github.com/NVIDIA-ISAAC-ROS
https://docs.nvidia.com/vpi/index.html
https://docs.nvidia.com/vpi/index.html

40

An interesting observation can be made while discarding
the ROS 2 message-passing infrastructure overhead in the
graph and focusing solely on the perception computations:

Figure 15

Benchmark of the
ROS 2 perception

graph of Figure
14 following

methodology
of section 2.4.

Depicted is the
mean runtime

in milliseconds
(ms) of the

graph on various
compute substrate

combinations.

Figure 16

Benchmark of the
ROS 2 perception

computations
of the graph in

Figure 14 following
methodology of

section 2.4. Note
that the ROS 2

message-passing
infrastructure

overheads in the
graph have been

discarded. Depicted
is the mean runtime
in milliseconds (ms)

of the perception
computations

on various
compute substrate

combinations.

250

200

150

100

50

0

CPU CPU + FPGA (KR260) CPU + GPU (Jetson Nano)

ROS 2 perception graph runtime (ms) Mean (speedup) RMS (speedup)

CPU3 91.48 ms 92.05 ms

CPU3 + FPGA4 (AMD’s Kria® KR260) 66.82 ms (1.36x) 67.82 (1.35x)

CPU5 + GPU6 (NVIDIA’s Jetson Nano 2GB) 238.13 ms (0.38x) 243.73 (0.37x)

3

Quad-core arm
Cortex-A53.

4

256K System Logic
Cells, 1248 DSPs,
26.6Mb on-chip

memory (LUT: 117K,
FF: 256K, DSP:

1248, BRAM: 144,
URAM: 64)

5

Quad-core arm
Cortex-A57.

6

128-core NVIDIA
Maxwell™

ROS 2 perception computations mean runtime (ms)

ROS 2 perception graph mean runtime (ms)

100

80

60

40

20

0

CPU + GPU (Jetson Nano)CPU + FPGA (KR260)

41

Hardware Acceleration
Report in Robotics

2022

when considering more powerful GPUs and CPUs we
obtain the following results:

Figure 17

Benchmark of the
ROS 2 perception

graph of Figure
14 following

methodology
of section 2.4.

Depicted is the
mean runtime

in milliseconds
(ms) of the

graph on various
compute substrate

combinations.

ROS 2 perception computations (rectify + resize)
runtime (ms) Mean (speedup) RMS (speedup)

CPU + FPGA (AMD’s Kria® KR260) - rectify and resize
kernels 23.90 ms 24.05 ms

CPU + GPU (NVIDIA’s Jetson Nano 2GB) - rectify and
resize kernels

102.29 ms 102.58 ms

ROS 2 perception graph runtime (ms) Mean (speedup) RMS (speedup)

CPU 91.48 ms 92.05 ms

CPU + FPGA (AMD’s Kria® KR260) 66.82 ms (1.36x) 67.82 (1.35x)

CPU + GPU (NVIDIA’s Jetson Nano 2GB) 238.13 ms (0.38x) 243.73 (0.37x)

CPU7 + GPU8 (NVIDIA’s Jetson AGX Xavier) 106.34 ms (0.86x) 107.30 (0.85x)

7

8-core ARM v8.2
64-bit CPU

8

512-core Volta GPU
with Tensor Cores

ROS 2 perception graph mean runtime (ms)

CPU + GPU
(Jetson AGX Xavier)

CPU + GPU
(Jetson Nano)

CPU + FPGA
(KR260)

CPU

250

200

150

100

50

0

42

Benchmarking
hardware acceleration
in ROS 2 Perception
Nodes

9

The ROS 2 intra-process
and inter-process
message-passing

overheads are often
significant in individual

ROS 2 Nodes.

10

Host (CPU) to device
(GPU or FPGA) data

transfer often happens
over shared memory

using various libraries
and/or runtimes (VPI,

Vitis Vision Library,
CUDA, XRT, OpenCL,

etc.). We discard
these overheads by

using device-specific
tools that allow

introspecting the
runtime execution of
each kernel for both

accelerators. For more
details on this refer

to [6].

4.3

To benchmark hardware acceleration in individual
ROS 2 Nodes of the Perception stack we will conduct
measurements of the acceleration kernels runtime in
milliseconds (ms) using two comparable accelerators
(hardware): AMD’s Kria KR260 and NVIDIA’s Jetson Nano
2GB.

To discriminate between any possible differences
between the A53 cores in KR260 and the A57 cores
in Jetson Nano, measurements will discard both the
ROS 2 message-passing infrastructure overhead9. In
addition, so that performance is more comparable across
accelerators, we will collect data while discarding the
host-device (GPU or FPGA) data transfer overhead10.

Benchmark results for various robotics perception
operations are presented below:

Hardware Acceleration
Report in Robotics

2022

43

25

20

15

10

5

0

NVIDIA’s Isaac ROS GEMs (Jetson Nano)AMD’s KRS (KR260)

ke
rn

el
 ru

nt
im

e
la

te
nc

y
(m

s)

LUT (%)

DSP (%)

FF (%)BRAM (%)

14%

12%

10%
8%

2%

4%

6%

25

20

15

10

5

0

NVIDIA’s Isaac ROS GEMs (Jetson Nano)AMD’s KRS (KR260)

ke
rn

el
 ru

nt
im

e
la

te
nc

y
(m

s)

LUT (%)

DSP (%)

FF (%)BRAM (%)

14%

12%

10%
8%

2%

4%

6%

Figure 18

Benchmark of a
ROS 2 rectify

Node acceleration
kernel runtime

latency (ms)
running on an

AMD KR260 and in
an NVIDIA Jetson
Nano 2GB. So that

performance is
comparable across

accelerators and
for the particular

perception
function,

measurements
discard the ROS 2
message-passing

infrastructure
overhead and the
host-device (GPU

or FPGA) data
transfer overhead.

Figure 19

ROS 2 rectify
Node acceleration

kernel resource
consumption in

the FPGA (%) and
relative to LUTs, FFs,

DSPs and BRAM.

Rectify - 7.34x

FPGA - % resource consumption (LUT, FF, DSP, BRAM)

ROS 2 Rectify Node kernel runtime latency (ms) - 7.34x speedup

44

Figure 20

Benchmark of a
ROS 2 resize

Node acceleration
kernel runtime

latency (ms)
running on an

AMD KR260 and in
an NVIDIA Jetson

Nano 2GB. So that
performance is

comparable across
accelerators and
for the particular

perception
function,

measurements
discard the ROS 2
message-passing

infrastructure
overhead and the
host-device (GPU

or FPGA) data
transfer overhead.

Figure 21

ROS 2 rectify
Node acceleration

kernel resource
consumption in

the FPGA (%) and
relative to LUTs, FFs,

DSPs and BRAM.

ke
rn

el
 ru

nt
im

e
la

te
nc

y
(m

s) 10

8

6

4

2

0

NVIDIA’s Isaac ROS GEMs (Jetson Nano)AMD’s KRS (KR260)
DSP (%)

FF (%)BRAM (%)

4.5%
4%

3.5%
3%

1.5%
1%

0.5%

2%
2.5%

LUT (%)

ke
rn

el
 ru

nt
im

e
la

te
nc

y
(m

s) 10

8

6

4

2

0

NVIDIA’s Isaac ROS GEMs (Jetson Nano)AMD’s KRS (KR260)
DSP (%)

FF (%)BRAM (%)

4.5%
4%

3.5%
3%

1.5%
1%

0.5%

2%
2.5%

LUT (%)

Resize - 2.62x

ROS 2 Resize Node kernel runtime latency (ms) - 2.62x speedup

FPGA - % resource consumption (LUT, FF, DSP, BRAM)

Hardware Acceleration
Report in Robotics

2022

45

400

300

200

100

0

NVIDIA’s Isaac ROS GEMs (Jetson Nano)AMD’s KRS (KR260)

LUT (%)

DSP (%)

FF (%)BRAM (%)

14%
16%

12%
10%
8%

2%
4%
6%

Figure 22

Benchmark of a
ROS 2 HOG Node

acceleration kernel
runtime latency

(ms) running on an
AMD KR260 and in

an NVIDIA Jetson
Nano 2GB. So that

performance is
comparable across

accelerators and
for the particular

perception
function,

measurements
discard the ROS 2
message-passing

infrastructure
overhead and the
host-device (GPU

or FPGA) data
transfer overhead.

Figure 23

ROS 2 HOG Node
acceleration

kernel resource
consumption in

the FPGA (%) and
relative to LUTs, FFs,

DSPs and BRAM.

Histogram of Oriented Gradients - 509.52x

400

300

200

100

0

NVIDIA’s Isaac ROS GEMs (Jetson Nano)AMD’s KRS (KR260)

LUT (%)

DSP (%)

FF (%)BRAM (%)

14%
16%

12%
10%
8%

2%
4%
6%

ROS 2 Histogram of Oriented Gradients Node kernel runtime latency (ms) - 509.52x speedup

FPGA - % resource consumption (LUT, FF, DSP, BRAM)

46

Figure 24

Benchmark of a
ROS 2 Harris

Node acceleration
kernel runtime

latency (ms)
running on an

AMD KR260 and in
an NVIDIA Jetson

Nano 2GB. So that
performance is

comparable across
accelerators and
for the particular

perception
function,

measurements
discard the ROS 2
message-passing

infrastructure
overhead and the
host-device (GPU

or FPGA) data
transfer overhead.

Figure 25

ROS 2 Harris
Node acceleration

kernel resource
consumption in

the FPGA (%) and
relative to LUTs, FFs,

DSPs and BRAM.

160

140

120

100

80

60

40

20

0

NVIDIA’s Isaac ROS GEMs (Jetson Nano)AMD’s KRS (KR260)

LUT (%)

DSP (%)

FF (%)BRAM (%)

25%

20%

15%

10%

5%

160

140

120

100

80

60

40

20

0

NVIDIA’s Isaac ROS GEMs (Jetson Nano)AMD’s KRS (KR260)

LUT (%)

DSP (%)

FF (%)BRAM (%)

25%

20%

15%

10%

5%

Harris - 30.27x

ROS 2 Harris Node kernel runtime latency (ms) - 30.27x speedup

FPGA - % resource consumption (LUT, FF, DSP, BRAM)

Hardware Acceleration
Report in Robotics

2022

47

50

40

30

20

10

0

LUT (%)

DSP (%)

FF (%)BRAM (%)

NVIDIA’s Isaac ROS GEMs (Jetson Nano)AMD’s KRS (KR260)

12%

10%

8%

6%

4%

2%

ke
rn

el
 ru

nt
im

e
la

te
nc

y
(m

s)

Figure 26

Benchmark of
a ROS 2 Canny

Edge Node
acceleration kernel

runtime latency
(ms) running on an

AMD KR260 and in
an NVIDIA Jetson

Nano 2GB. So that
performance is

comparable across
accelerators and
for the particular

perception
function,

measurements
discard the ROS 2
message-passing

infrastructure
overhead and the
host-device (GPU

or FPGA) data
transfer overhead.

Figure 27

ROS 2 Canny Edge
Node acceleration

kernel resource
consumption in

the FPGA (%) and
relative to LUTs, FFs,

DSPs and BRAM.

Canny Edge Tracing - 3.26x

ROS 2 Canny Edge Tracing Node kernel runtime latency (ms) - 3.26x speedup

FPGA - % resource consumption (LUT, FF, DSP, BRAM)

50

40

30

20

10

0

LUT (%)

DSP (%)

FF (%)BRAM (%)

NVIDIA’s Isaac ROS GEMs (Jetson Nano)AMD’s KRS (KR260)

12%

10%

8%

6%

4%

2%

ke
rn

el
 ru

nt
im

e
la

te
nc

y
(m

s)

48

Figure 28

Benchmark
of a ROS 2

Fast Corner
Detection Node

acceleration kernel
runtime latency

(ms) running on an
AMD KR260 and in

an NVIDIA Jetson
Nano 2GB. So that

performance is
comparable across

accelerators and
for the particular

perception
function,

measurements
discard the ROS 2
message-passing

infrastructure
overhead and the
host-device (GPU

or FPGA) data
transfer overhead.

Figure 29

ROS 2 Fast
Corner

Detection Node
acceleration

kernel resource
consumption in

the FPGA (%) and
relative to LUTs, FFs,

DSPs and BRAM.

ke
rn

el
 ru

nt
im

e
la

te
nc

y
(m

s)
40

30

20

10

0

NVIDIA’s Isaac ROS GEMs (Jetson Nano)AMD’s KRS (KR260)
DSP (%)

FF (%)BRAM (%)

18%
16%
14%
12%

6%
4%
2%

8%
10%

LUT (%)

ke
rn

el
 ru

nt
im

e
la

te
nc

y
(m

s)

40

30

20

10

0

NVIDIA’s Isaac ROS GEMs (Jetson Nano)AMD’s KRS (KR260)
DSP (%)

FF (%)BRAM (%)

18%
16%
14%
12%

6%
4%
2%

8%
10%

LUT (%)

Fast Corner Detection - 8.43x

ROS 2 Fast Corner Detection Node kernel runtime latency (ms) - 8.43x speedup

FPGA - % resource consumption (LUT, FF, DSP, BRAM)

Hardware Acceleration
Report in Robotics

2022

49

ke
rn

el
 ru

nt
im

e
la

te
nc

y
(m

s)

60

50

40

30

20

10

0

NVIDIA’s Isaac ROS GEMs (Jetson Nano)AMD’s KRS (KR260)
DSP (%)

FF (%)BRAM (%)

10%
9%
8%
7%

4%
3%
2%
1%

5%
6%

LUT (%)

Figure 30

Benchmark of a
ROS 2 Gaussian

Difference Node
acceleration kernel

runtime latency
(ms) running on an

AMD KR260 and in
an NVIDIA Jetson

Nano 2GB. So that
performance is

comparable across
accelerators and
for the particular

perception
function,

measurements
discard the ROS 2
message-passing

infrastructure
overhead and the
host-device (GPU

or FPGA) data
transfer overhead.

Figure 31

ROS 2 Gaussian
Difference

Node acceleration
kernel resource
consumption in

the FPGA (%) and
relative to LUTs, FFs,

DSPs and BRAM.

Gaussian Difference - 11.94x

ROS 2 Gaussian Difference Node kernel runtime latency (ms) - 11.94x speedup

FPGA - % resource consumption (LUT, FF, DSP, BRAM)

ke
rn

el
 ru

nt
im

e
la

te
nc

y
(m

s)

60

50

40

30

20

10

0

NVIDIA’s Isaac ROS GEMs (Jetson Nano)AMD’s KRS (KR260)
DSP (%)

FF (%)BRAM (%)

10%
9%
8%
7%

4%
3%
2%
1%

5%
6%

LUT (%)

50

40

30

20

10

0

NVIDIA’s Isaac ROS GEMs (Jetson Nano)AMD’s KRS (KR260)

LUT (%)

DSP (%)

FF (%)BRAM (%)

14%
16%

12%
10%
8%

2%
4%
6%

Figure 32

 Benchmark of a
ROS 2 Bilateral

Filter Node
acceleration kernel

runtime latency
(ms) running on an

AMD KR260 and in
an NVIDIA Jetson

Nano 2GB. So that
performance is

comparable across
accelerators and
for the particular

perception
function,

measurements
discard the ROS 2
message-passing

infrastructure
overhead and the
host-device (GPU

or FPGA) data
transfer overhead..

Figure 33

ROS 2 Bilateral
Filter Node

acceleration
kernel resource
consumption in

the FPGA (%) and
relative to LUTs, FFs,

DSPs and BRAM.

Bilateral Filter - 9.33x

ROS 2 Bilateral Filter Node kernel runtime latency (ms) - 9.34x speedup

FPGA - % resource consumption (LUT, FF, DSP, BRAM)

40

30

20

10

0

NVIDIA’s Isaac ROS GEMs (Jetson Nano)AMD’s KRS (KR260)

LUT (%)

DSP (%)

FF (%)BRAM (%)

14%
16%

12%
10%
8%

2%
4%
6%

Hardware Acceleration
Report in Robotics

2022

51

52

Hardware Acceleration
Report in Robotics

2022

53

Discussion

54

The ROS 2 Hardware Acceleration Working Group was born in 2021 and its
monthly gatherings have managed to engage with a wide community of
roboticists, attracting many users (from both industry and academia) to ROS 2
and its use. With plenty of attendance in each one of its meetings12 and with
the participation of multiple silicon vendors, the group is arguably one of the
most active ones in the ROS robotics domain.

The success of the ROS 2
Hardware Acceleration Working
Group during 2021 and
2022 suggests that there’s an
increasingly evident interest in
the use of hardware acceleration
solutions in robotics

The success of the ROS 2 Hardware Acceleration Working Group during 2021
and 2022 suggests that there’s an increasingly evident interest in the use of
hardware acceleration solutions in robotics, however, the community survey
conducted hints that only about half of the respondents (51%, section
3.1) is confident about the value and differences between hardware
acceleration solutions for ROS 2 and Gazebo. Moreover, only 62.5%
(section 3.2) have ever programmed an acceleration kernel, the majority of
which used NVIDIA CUDA (80.3%, section 3.4). This suggests that there’s still
a lot of work to be done from silicon vendors’ side to further simplify the use
and integration of their solutions in the ROS robotics ecosystem and provide
comprehensive documentation. The previous statement is confirmed by
section 3.3 which highlights what aspects of hardware acceleration are of
most relevance to roboticists using ROS. Unsurprisingly, we find that more
than half of the respondents (52.1%) indicate that a simpler integration with ROS
2 and its ecosystem of tools is of most relevance to them:

 52.1% - Integration with ROS 2 (ament build system 11.5%, colcon build
tools 19.8% and acceleration firmware 20.8%)

 32.3% - Capabilities to easily switch between hardware accelerated and
CPU-centric Nodes

 11.5% - Benchmarking capabilities for hardware acceleration

 4.1% - Others

12

See https: //github.
com/ros-acceleration/
community#meetings

for a community-
maintained list of

meeting minutes and
recordings.

https://github.com/ros-acceleration
https://github.com/ros-acceleration/community#meetings
https://github.com/ros-acceleration/community#meetings
https://github.com/ros-acceleration/community#meetings

55

Hardware Acceleration
Report in Robotics

2022

When looking at which packages or components of ROS
2 and Gazebo roboticists would like to accelerate first
(section 3.5, multiple selections allowed), we find that
the ROS 2 Perception stack with a 64.6% is the most
demanded group of packages to be accelerated. This
is closely followed by “Gazebo physics engines’’ (60.4%),
navigation2 (40.6%), “DDS communication middleware”
(30.2%), MoveIt 2 (21.9%), ROS 2 networking stack (UDP/
IP/Ethernet, 20.8%) and the ROS 2 control stack (19.8%).
These numbers are also confirmed by individual answers
provided in sections 3.6 and 3.7.

The majority of the respondents (92.7%) indicated
that they’d prefer the commercially friendly Apache
2.0 license for hardware acceleration resources and
libraries (section 3.8). When asked about the format of
acceleration kernels, opposed to 18.9% which would be
fine with just binaries, 74.8% would prefer source code
access to acceleration kernels with code examples
(section 3.9).

One surprising aspect encountered while conducting
the survey is that roboticists seem to care about speed

or latency (48.9%, shorter execution time) as much as
real-time and determinism (46.8%). Only a reduced
4.3% would prioritize power consumption as indicated
in section 3.10. This is somewhat counter-intuitive
when looking at how the majority of the roboticists
currently use GPUs (69.8%, section 3.11) versus
FPGAs (21.9%), since after all, it’s widely accepted that
FPGAs outperform GPUs and CPUs while delivering
real-time and determinism in computations, and with
lower power consumption. To add to this conflict, section
3.14 hints that hardware acceleration is mostly used
to create battery-powered robots (and thereby
power-sensitive) with roboticists creating autonomous
mobile robots (AMRs, 36.4%) followed by drones (19.8%),
industrial robotic arms (12.5%) and legged robots (5.2%).
This indicates that there’s margin for FPGA usage
growth in the ROS robotics community.

The numbers of type of accelerator usage (section 3.11)
are coherent with the most popular commercial solutions
(section 3.13) with NVIDIA Jetson AGX Xavier being the
leading solution (33.3%) followed by both the NVIDIA
Jetson Nano (15.6%) and the AMD’s Zynq UltraScale
embedded portfolio (15.6%, including Kria® boards).

Roboticists seem to
care about speed or
latency (48.9%, shorter
execution time) as
much as real-time and
determinism (46.8%)

Finally, Ubuntu seems to be the dominant (79.5%, section
3.15) operating system requested by ROS roboticists for
hardware acceleration. Ubuntu 20.04 is the preferred
option (59%) versus Ubuntu 22.04 (20.5%). Yocto-
based rootfs are the second most popular choice with
7.7% of the respondents preferring it. As for packaging
mechanisms, .deb files are the preferred option (59%,
section 3.16) followed by Docker containers (23.1%).

There’s still a
lot of work to
be done from
silicon vendors’
side to further
simplify the use
and integration
of their solutions
in the ROS
robotics
ecosystem

https://github.com/ros-perception
https://github.com/ros-planning/navigation2
https://github.com/ros-planning/moveit2
https://github.com/ros-controls

56

The results obtained across benchmarks performed on a simple pre-
processing ROS 2 perception graph that focus on capturing speed or latency
(time between the start and the completion of a task) show that optimized
FPGA accelerators outperform their GPU counterparts, even when using
powerful GPUs. Considering mean runtime measurements (in ms, Figure
15, section 4.2), the use of CPU + FPGA13 deliver a 3.56x speedup over a
comparable CPU + GPU14, and a 1.36x speedup over a comparable CPU15.
When considering a more powerful CPU + GPU16 combination (Figure 17,
section 4.2), the FPGA still outperforms it with a 1.59x speedup.

To further study these results and to discriminate between any possible
differences between the two CPUs used (A53 cores in KR260 and the A57
cores in Jetson Nano), Figure 16 (section 4.2) discards the ROS 2 message-
passing infrastructure overhead and reports on the perception computations in
the graph. Results show how perception computations in the FPGA have a 4.27x
speedup relative to their GPU counterparts when running in the Jetson Nano.

Latency results obtained across
benchmarks performed on
a ROS 2 perception graph
show that optimized FPGA
accelerators outperform their
GPU counterparts, even when
using powerful GPUs

Performance improvements in the form of latency with dedicated acceleration
kernels in FPGAs are further evident when considering the power domain.
Figure 34 depicts the performance-per-watt of the ROS 2 Perception graph
studied in section 4.2 and across all the accelerators considered before:

13

AMD Kria® KR260

14

NVIDIA Jetson Nano
2GB

15

Quad-core arm
Cortex-A53.

16

NVIDIA Jetson AGX
Xavier

Figure 34

Performance-per-
watt benchmark

of a simple ROS 2
perception graph

across various
accelerators. The

computational
graph studied

is described in
section 4.2.

2.5

2

1.5

1

0.5

0

CPU + FPGA (KR260) CPU + FPGA
(Jetson Nano)

CPU + GPU
(Jetson AGX Xavier)

ROS 2 perception graph performance-per-watt (Hz/W)

57

Hardware Acceleration
Report in Robotics

2022

While measuring power consumption in a ROS 2
perception graph, we observe that the FPGA designs
are much more power efficient than their GPU
counterparts. The KR260 presents a performance-per-
watt figure that's 6x (5.93x) better than the one in the
Jetson Nano and 8x (7.95x) better than the one in the
Jetson AGX Xavier. An interesting observation can be
made here comparing the performance-per-watt results
obtained from the Jetson Nano and the Jetson AGX
Xavier: the Xavier features a more powerful CPU and
GPU, which consumes more energy while performing
computations, however the latency performance of
these computations do not scale in the same manner
as the energy consumption. What these results hint is
that the rate at which the energy consumption grows
with NVIDIA Jetson (CPU + GPU) solutions seems to be
smaller than the rate at which the latency performance
improves, which leads to a decaying performance-
per-watt in our ROS 2 perception measurements. This
statement links back to the rule of thumb shared in
section 2.3 that emphasized how “bandwidth grows
by at least the square of the improvement in latency”.
With GPUs often focusing on bandwidth to measure
performance, when considering latency as the measure
of performance GPUs struggle to find themselves on
equal footing with their FPGA counterparts.

The rate at which the
energy consumption
grows with NVIDIA
Jetson (CPU + GPU)
solutions seems to be
smaller than the rate
at which the latency
performance improves,
which leads to a
decaying performance-
per-watt in our
ROS 2 perception
measurements

There are nevertheless various advantages that GPUs
inherently have and that should be considered while
building complex robotic computations. Moreover,
though FPGA kernel runtime execution outperforms their
GPU counterparts, it’s relevant to note that FPGAs are
resource-limited and thereby it’s important to consider
that only a fixed set of accelerators would be able to fit
within an FPGA at any given point in time whereas the
GPUs don’t have this limitation due to their architectures.

Section 4.3 further dives into this and focuses on studying
perception performance in individual ROS 2 Nodes
while estimating resources required in an FPGA. To do so,
it isolates perception computations by discarding both
the ROS 2 message-passing infrastructure overhead,
as well as the host-device (GPU or FPGA) data transfer
overhead. Results depicted over figures 18-33 indicate that
perception ROS 2 Nodes running in an FPGA outperform
those running in a GPU by relevant speedups. All the way
up to 500x (Figure 22) in popular perception algorithms
such as the Histogram of Oriented Gradients (HOG).

ROS 2 Nodes
running in an
FPGA outperform
those running in
a GPU by relevant
speedups. All the
way up to 500x in
popular perception
algorithms such as
the Histogram of
Oriented Gradients
(HOG)

58

Hardware Acceleration
Report in Robotics

2022

59

Hardware
Acceleration
solutions
for the robotics
architect

Acceleration Robotics is amongst the top experts
globally on the Robot Operating System (ROS),
including ROS and ROS 2 computational graphs. Our
hardware acceleration efforts are accelerator-agnostic
(FPGAs or GPUs) and robot-agnostic. We focus on what
works best to improve robotics computations. Our work
is well known, widely distributed and used.

The following solutions are meant to help robotics
architects design specialized robot compute
architectures and streamline various robotic processes
using open source including ROS and Gazebo, so that
you don’t spend time reinventing the wheel and re-
developing what already works.

https://accelerationrobotics.com/

60

Robotic Processing Units (RPUs)
Robotic Processing Units (RPUs) are robot brains, processing units for robots
that map efficiently robot behaviors (programmed as ROS computational
graphs) to underlying compute resources. They empower robots with the ability
to react faster, consume less power, and deliver additional real-time capabilities.

Services
The following consulting services help rapidly augment your engineering
capabilities with a robotics deep domain expertise.

Name Description

ROBOTCORE™

A robot-specific processing
unit specialized in ROS
computations. Features 16x
CPUs, a GPU and an FPGA.
This is the processing unit
for the robotics architect
targeting autonomous
mobility, industrial
manipulation and healthcare
robotics applications.

Name Description

Robotics
consulting

Hardware acceleration
framework for ROS
and ROS 2 extending support
for leading FPGAs and GPUs.

Robot FPGA
and GPU IP

design services

Tools to speed-up ROS 2
graphs with the cloud, and in
the cloud. Helps roboticists
launch parts of their ROS 2
computational graphs into the
cloud leveraging CPU, FPGA
and/or GPU cloud instances.

https://accelerationrobotics.com/robotcore.php
https://accelerationrobotics.com/robotics-consulting.php
https://accelerationrobotics.com/robotics-consulting.php
https://accelerationrobotics.com/robot-ip-design.php
https://accelerationrobotics.com/robot-ip-design.php
https://accelerationrobotics.com/robot-ip-design.php

61

Hardware Acceleration
Report in Robotics

2022

Tools and Robot IP Cores
ROS 2 API-compatible hardware acceleration tools and robot Intellectual
Property (IP) cores (robot cores). Increase your robot’s performance, including
latency, throughput and power efficiency.

Name Description

ROBOTCORE™
Framework

Hardware acceleration
framework for ROS
and ROS 2 extending support
for leading FPGAs and GPUs.

ROBOTCORE™
Cloud

Tools to speed-up ROS 2
graphs with the cloud, and in
the cloud. Helps roboticists
launch parts of their ROS 2
computational graphs into the
cloud leveraging CPU, FPGA
and/or GPU cloud instances.

ROBOTCORE™
Perception

Accelerated ROS 2 robotics
perception stack. API-
compatible with the ROS 2
perception stack.

ROBOTCORE™
Transform

Accelerated ROS 2
coordinate transformations
(tf2). API-compatible with the
ROS 2 transform (tf2) library

https://accelerationrobotics.com/robotcore-framework.php
https://accelerationrobotics.com/robotcore-framework.php
https://accelerationrobotics.com/robotcore-cloud.php
https://accelerationrobotics.com/robotcore-cloud.php
https://accelerationrobotics.com/robotcore-perception.php
https://accelerationrobotics.com/robotcore-perception.php
https://accelerationrobotics.com/robotcore-transform.php
https://accelerationrobotics.com/robotcore-transform.php

62

References
[1]: Liu, S., Zhu, Y., Yu, B., Gaudiot, J.
L., & Gao, G. R. (2021). The Promise
of Dataflow Architectures in the
Design of Processing Systems
for Autonomous Machines. arXiv
preprint arXiv:2109.07047.

[2]: Hennessy, J. L., & Patterson, D.
A. (2011). Computer architecture: a
quantitative approach. Elsevier.

[3]: Quigley, M., Conley, K., Gerkey, B.,
Faust, J., Foote, T., Leibs, J., ... & Ng, A.
Y. (2009, May). ROS: an open-source
Robot Operating System. In ICRA
workshop on open source software
(Vol. 3, No. 3.2, p. 5).

[4]: Macenski, S., Foote, T., Gerkey, B.,
Lalancette, C., & Woodall, W. (2022).
Robot Operating System 2: Design,
architecture, and uses in the wild.
Science Robotics, 7(66), eabm6074.

[5]: A. Pemmaiah​, D. Pangercic, D.
Aggarwal, K. Neumann, K. Marcey,
“Performance Testing in ROS 2”.
https://drive.google.com/file/d/15nX8
0RK6aS8abZvQAOnMNUEgh7px9V
5S/view

[6]: REP-2008 - ROS 2 Hardware
Acceleration Architecture and
Conventions https : //github.com/ros-
infrastructure/rep/pull/324

[7]: Victor Mayoral-Vilches, Sabrina
M. Neuman, Brian Plancher, and
Vijay Janapa Reddi. Forthcoming.
“RobotCore: An Open Architecture
for Hardware Acceleration in ROS
2.” In 2022 IEEE/RSJ International
Conference on Intelligent Robots
and Systems (IROS). IEEE. Preprint

https://www.google.com/url?q=https://github.com/ros-infrastructure/rep/pull/324&sa=D&source=docs&ust=1664449848083904&usg=AOvVaw1fgl51qg9liW41e_4sS9vB
https://www.google.com/url?q=https://github.com/ros-infrastructure/rep/pull/324&sa=D&source=docs&ust=1664449848083904&usg=AOvVaw1fgl51qg9liW41e_4sS9vB
https://scholar.harvard.edu/sneuman/publications/robotcore-open-architecture-hardware-acceleration-ros-2
https://scholar.harvard.edu/sneuman/publications/robotcore-open-architecture-hardware-acceleration-ros-2
https://scholar.harvard.edu/sneuman/publications/robotcore-open-architecture-hardware-acceleration-ros-2
https://arxiv.org/pdf/2205.03929.pdf

63

Hardware Acceleration
Report in Robotics

2022

64

	INDEX
	1. EXECUTIVE SUMMARY
	2. INTRODUCCION
	2.1. The CPU whack-a-mole in robotics
	2.2. ROS 2 as the common baseline in robotics
	2.3. Bandwidth, latency and performance considerations
	2.4. Methodologhy for benchmarking performance
	2.4.1. Differences between tracing and benchmarking

	3. COMMUNITY SURVEY
	3.1. Are you familiar with the different hardware acceleration solutions and their advantages for ROS 2 and Gazebo? (e.g. FPGAs vs GPUs)
	3.2. Have you ever programmed an acceleration kernel?	
	3.3. We're pushing forward REP-2008 initiative to better integrate hardware acceleration with ROS and Gazebo, what's most important for you?
	3.4. Which hardware acceleration platform/framework are you familiar with?
	3.5. What packages/components do you think we should prioritize when it comes to hardware accelerating ROS 2 and/or Gazebo?
	3.6. What specifically would you like to see accelerated in ROS 2 or Gazebo in the short term?
	3.7. What type of examples would you like to see on how hardware acceleration can improve Gazebo/Ignition and ROS 2?
	3.8. Silicon vendors often use concerning licenses to lock users into their hardware. Which type of licenses would you like to see in the packages that your vendor maintains/provides?
	3.9. Do you prefer kernels integrated in ROS 2 packages as binaries or built as part of the ROS 2 workspace from source?
	3.10. What do you care more about when it comes to hardware acceleration?
	3.11. Which hardware acceleration solution are you using or planning to use?
	3.12. Why have you picked this hardware acceleration solution?
	3.13. Which computing hardware solution are you using in your robots?
	3.14. What type of robot are you creating?
	3.15. Which Operating System (rootfs) should we be focusing on?
	3.16. How do you want your accelerators packaged for production use?

	4. BENCHMARKING HARDWARE ACCELERATION
	4.1. Case study: Hardware Accelerating ROS 2 Perception
	4.2. Benchmarking hardware acceleration in a ROS 2 Perception Graph
	4.3. Benchmarking hardware acceleration in ROS 2 Perception Nodes
	4.3.1. Rectify - 7.34x
	4.3.2. Resize - 2.62x
	4.3.3. Histogram of Oriente Gradients - 509.52x
	4.3.4. Harris - 30.27x
	4.3.5. Canny Edge Tracing - 3.26x
	4.3.6. Fast Corner Detection - 8.43x
	4.3.7. Gaussian Difference - 11.94x
	4.3.8. Bilateral Filter - 9.33x

	5. DISCUSSION
	6. HARDWARE ACCELERTION
	Robotic Processing Units (RPUs)
	Services
	Tools and Robot IP Cores

	REFERENCES

